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1. INTRGDUCTION

The muon has been a mystery since its discovery in 1937 (Ref. 1). Afrer
its properties were disentangled from the pion, physicists found a particle
tnat could only be distinguished from the electron by its mass. In the years
since, physicists have also fcucd it necessary to distinguish between muons,
electrons, and taus by invoking separate conserved additive lepton quantum
numbers?, These quantities do not relate to any known space-time symmetry as
does energy, nor to any known massless gauge boson, as does the electric
charge. We know of no fundamental reason why the muon, ec¢lectron, and tau
family numbers should be conserved.

Present theoretical thought includes the origin of the family number
problem under the hierarchy problem: Why are there more quarks and 1leptons

beyond the u and d quarks and the electron and v, leptons, and what are the

e
connections to the "extra" hierarchies? In this particular experiment, we ask
how the muon and <lectron are connected and at what 1level, if any, do the
neutrinoless family number violating decays u +ey, u + eyy, and u + eee occur.
The standard model is silent on this question3. Extensions to the standard
model speak with many different voices with as many different answers“,
Examples include the existence of multiple Higgs doublets%; fluvor-changing
neutral gauge hosons (for example, the gauge bosons associated with horizontal
gauge {nteractions®, or the gauge bosons present in extended technicolor
theories’); composite models®: muon-number violation mediated by light
lepto—-quarks (present 1in some grand unified theories? and 1n extended
technicolor theories’); muon-number violation mediated by supersymmetric
partners of the usual SU(2); x U(1l) gauge bosonsl0: ard the existence of new
elecrroweak fnteractions!'., 1In general, these different sources of lepton
nurher nonconservation predict different relative sgtrengthe for the various
neutrinoless transiticar. This underscores the importance of cearching for
all of these processes.

Anotter process which violates lepton-family numher i8 neutrino
oscillationl2, Oscillations explicitly require massive neutrinos while this
is not the case for the processes discussed abhove. However, oscillatinn
experiments can he sensitive to very small neutrino masmres (<] eV), while
effects in the: neutrinoless transitions caused by theue oscillations alone
would be negligitly small.

Amongst this tabtble, the experimental 1limits on these decays have heen
steadily decr:asing., See Figure 1. The current limits (9% C,L.} for the

various lepton-number nonconserving decays are:



D-' .' T A T"’ l I
- o urey
QIT"- ¢ A L—eee -
[
« F o] uoreyy 1
:n"— . 99 o o -
Zz ! \A
X
7| 1Y -
%?tr o, o
< L a-
ac & o
@ et » A
°
o P R B U R j
B45 WSS 965 o5 B85
YEAR
FIGURE 1 FIGURE 2
Upper limit for several muon-vislating A schematic diagram of the Crystal
processes as function of time. Box detector.
F(u+ey) ¢ 1.7 x 10710 (Ref. 13)
T(u+evy)
Fluseee) ¢ x 10710 (Ref. 14)
T'(u+evv)
TCureyy) g4 x 1072 (Ref. 15)
I'(u+ery)

2. THE EXPERIMENTAL HARDWARE

The Cryatal Box detector is designed to improve the limits on each of these
decays to the level of 107!!., 1t 1s shown in Figure 2. It is a ganeral
purpose charged particle and photon detector of large solid angle in place at
the Stopped Muon Channel of the Clinton P. Anderion Meson Physics Facllity
(LAMPF). A separated, 26 MeV/c u+ beam stons in aa elliptical, polystyrene
target located at the center of the detector. The :target tilts at £5° with
respect to the beam direction to present a 6.7 zm radius projected ciircular
crosa section, 52 mg/cm? thick, to the beam. The muon stopping rate s
typically 3 x 108 s~! (average) with a duty factor of 6.8%. The polarization
of decaying muons in polystyrene 18 measured to be (l4.€ % 1,4)%, Surrounding
the target is a 728-wire, eight-plane, large-sterco-anple drift chanber 16
which determines the tracks of charged particles in thiee dimensions. The

aingle-plane resolution 1s about 350 ym FWHM. The measured single track
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tion efficlency 1s 957, The chamber presents an average of
3 radiation lengths to a particle traversing it in a direction
the beam axis. There is no applied magnetic field. The knowledge
(gin and the original direction of a charged particle i{s limited by
scattering 1in the target, the target frame, and the 1inner
ber foil. The position resolution of the origin on the target is on
of 2 mm,

particles next traverse a scintillator hodoscope containing 36

Each counter 18 44,5 x 5.7 x 1,27 ¢m, with a photomultiplier
> each end by a light pipe. These counters define the fiducial
: charged particles, The ccunters also provide timing and position
n. Constant fraction discriminatorl’ signals from the two ends of a
or are connected to a meantimerl® for trigger coincidence decisions.
‘ed time resolution of each counter 1is 290 ps (FWHM). The position
| along the length of the counter is 4.2 cm (FWHM).
{lons upstream and downstream of the hodoscope are covered Ly 16 veto
:ion counters, each measuring 13.3 x 23.8 x 0.3 cm. These counters
to help distinguish charged particles from photons. Thelr average
lution 18 750 ps (FWHM).
itermost part of the dete«' 't 1s an array of 360 NaI(Tl) face

6.35 x 6.35 cm cross section and 30.5 cm 1long, plis 36 corner
6.35 x 6.25 x 63.5 cm, These crystals are packag-~i Iin a single
lly sealed container. Paper wrapping around each crystal provides
solation. Each face crystal is coupled to a sgingle photomultiplier
e corner crystals have photomultipliers at both ends, Each

iplier has its own constant fraction discriminator with a threshold

)solute energy gain of each NalI(Tl) crystal 1s calibrated using a
source (4,43 MeV Y1) and the reactions " p » nn?(ayy)
< 8) MeV) and w7 p + ny (E.Y = 129,4 MeV). The measured energy
n function is approximately an asymmetric gaussian with a FWHM of
30 MeV. See Figure 3. The plon data is taken with a liquid hydrogen
placing tha drift chamber.
ins and offsets for the timing system are calibrated using Michel
itrons coming from a centrally placed plastic counter just behind the
The coincidence of this counter with the scintillator hodoscope and
‘orms a timing trigger with the timing start signal advance! 10 ns on

ler trigger. The alternating start signal provides a calibration of
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the gain of the timing syatem. The Nal was calibrated once during our January
run, the plastic scintillators were calibrated daily,

The stability of the gains of each timing and pulse height NaI(Tl) channel
is monitored every two hours using a Xe flash tube with a fiber optics cable
connected to each photomultiplier. The timing resolution of the WNaI(Tl)
detectors 18 1.1 ns (FWHM). The photon conversion point 1is determined to
about 3.8 cm (FWHM) by the energy sharing in the different Nal crystals.

The single particle acceptance in the fiducial area (which assures shower
containment 1in the NaI(T1)) 1is /4wn = 45%, 1including finite target-size
effects. The s01id angle times efficiency {z approximately 122 for 3e events,
40%Z for ey events, and 14X for eyy events. Figure 4 summarizes the

sensitivity of the experiment as a funcrion of running time and bean

intensity.

3. TRIGGER REQUIREMENTS AND DATA ACQUISITION

In order to reduce the data stream to manageable proportions, the trigger
of the experiment is quiic complex!¥. The ey and eyy triggers define particle
types by quadrants. We define an election (or positron) quadrant as & signal
in a hodoscope sciatillator with one or more Nal crystals in the same quadrant
having more than 5 MeV. A photon quadrant is 5 MeV or more energy in at least
one Nal crystal with no energy in the plastic scintillators in that quadrant.

The ey trigger requires opposite electron and photon quadrants within 7 ns of
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is monitored every two hours using a Xe flash tube with a fibe:
connected to each photomultiplier. The timing resolution of
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'y and that each have &n Nal energy greater than 35 MeV. The eyy
equires at least two gamma quadrants, one and only one electron
and a total 1in all of the Nal of more than 70 MeV,

trigger 18 much more sophisticated. It requires that three
ors fire within 5 ns of each other and that there be signals in
-adjacent scintillators within 15 ns of each other. ‘hen these
| are met, a pre-trigger starts the data acquisition system. A
wat-trigger then considers the geometry of the event in detail. The
jer defines an electron as a signal in a hodosccpe scintillator with
5 MeV of energy in a crystal in one of the three rows of crytals
)ehind that scintillator, The three electrong mus: be in a geometric
lnematically consistent with a 3e decay. This post-trigger takes an
l 150 ns. In addition, for most of the run, the post-trigger
a 70 MeV threshold from the sum of ail of the Nal., These three
nodes generate a trigger rate of about S Hz with a 4.4 MHz

rous muon stopping rate in the target at a 6.7% duty factor (300 kHz

paratus is instrumented with analog-to-digital converters (ADC's) and
igital converters (TDC’s) on all of the plastic scintillators and Nal

The drift-chamber wire signels are discriminated and used to stop
1 TDC’s. In addition, a second ADC with a different gate ic used on
crystals as a plleup rejector. The trigger starts all the TDC's,
a gate for the ADC’s, and provides a start signal for the readout of
'« For each event all the s8cintillator, ADC, and TDC data are

Distributed processors are used to perform a sparse data scan for
t—chamber TDC 1information aund the Nal pulse height and timing
on., Taking data in this fashion makes each event about 500 16-bit
ng. At fixed intervals a number of scalers are read out; these
nformation about the number of muons stopped, the duty factor, and
'e A PDP-11/44 {8 used to acquire and tape the data. The optlon
) reduce the taping rate by using the data acquisition computer to

on the data before taping.

TS

mits on the sensitivity of this experiment are determined by how well
irounds are supptessed and the number of muons stopped. The sources
ground are randem colncidences between Michel positrons and
thlung and annihilation photons, and the prompt processes y + eeevv,

and 1 » evvud. Using the energy, time, and position resolutions one
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>laces the requirement on all decay modes that the particles be in time, that
the total energy be equal to that of the muon, and that the vector sum of the
romenta be zero. In addition, for 3e events, one can require that all tracks
have a common origin on the target. The backgrounds are completely suppressed
for the 3e and eyy modes. Randoms dominate the background for the ey mode
with about a 10X prompt background.

A small amount of data was collected this January., We acquired data at
about 300 kHz of muons and 6.8% duty factor. Approximately 2.2 x 10l! muons
were stopped., All the data were processed by a multistage filtering process.
A first pass consisted of software timing cuts and geometrical cuts that could
be c=pplied without using the drift chamber reconstruction routines. This
reduced the amount of data by a factor of ~10. A second pass used the drift
chamber tracks to allow one to dc more severe timing and geometrical cuts, and
provided a further reduction of a factor of ~10. The data remaining after the
first two passes consist of 103-10 events in each of the data streams. These
are carefully investigated to look for a prompt signal and any candidates for
lepton family violating decays. The final analysis of the ey and eyy modes is
still in progress. The rest of this paper will deal with the 3e mode.

The signature for a u+ + etete™ event 1s that the three trajectories should
emerge from a common vertex in the target in time coincidence, L[E, the sum of
the three energles deposited in the NaI(Tl) plus the ionization energy losses
in other materials should equal the muon mass, and the vector sum of the three
momenta (|rP|) should te zero.

The main source of triggers 1s the random coincidence of positrons from
three independent ordinary muon decays. These events tend not to satisfy any
of the above constraints., Events due to u+ > e+e+e—ve6u, a process which does
not violate separate lepton number conservation, have LE + |Ip]| < Mu and LE
generally much 1ess than Mu'

The first analysis pass requires that three non-adjacent scintillator
meantimes occur within a 1.5 na interval, and that each of these scintillators
have behind it a NaI(Tl) clump with at leagt 10 MeV within a 5 na interval. A
clump 18 defined as the crystal with the larazest local pulse height plus the
nearest 24 surroundii..g crystals. The output of the first pass 1s 1.3 x 10%
events.

For the gecond pass, we recon-truct tracks iIn the drift chamber that
intersect t!- active scint{llators. The reconstruction program rnaquires hits
in at least 7 of the 8 drift chamber lavers for each track. The analysis
requiren that three tracks {(nters-~ct the target plane with an angle of more

than 3°. and that the rms aum of +the distances between the three track
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intersection points on the target (the vertex) must be less than a radius of
6 cm, Finally, 8 cut LE + |IP| < 120 Mev, is imposed. A total of 3112 events
survive thege cuts.

The third analysis pass tizhtens the vertex cut after weighting each
track~target intersection point according to the uncertainty 1in the
measurement of that point. The 1.5 ns scintillator timing cut is reimposed
after correcting each particle’s time—of -flight for the path length from the
vertex to the scintillator. This pass reduces the number of events to 83.

The final cuts require that LE + |If| < 110 MeV, |r$| < 12 MeV, and that
the three scintillator meantimes occur within a 1 ns interval. No events pass
these cuts. The acceptance of the apparatus was calculated with a Monte Carlo
program that accurately reproduces the response of the detectors to positrons,
electrons, and photons. Electromagnetic showers are simulated with the shower
code EGS (Ref. 20). The product o” the acceptance and detector efficilency for
u + 3e events, assuming a constant matrix element, is (8.5 + 0.8%). We obtain

an upper limit of

B < 1.3 x 10710 (90%z c.L.) .

ule

As a check of the performance of the apparatus and the normalization, the

portion of the data taken withonut the total Nal energy requirement

+e+e_ve\7u events. Siace

these events tend to have a non-zero vector momentum sum, the {£p| cut was

(2.55 x 1010 muons stopped) was analyzed for u' + e

remcved, Fleven events passed these cuts. The Monte Carlo program predicts
12 £ 2 events, using a matrix element baced on standard electroweak theory?!l,

The distributions of LE, LE # |£p|, vertex, and timing for the data and the
Monte Carlo events agree with each other. The agreement of these
distributions and of the number of events, verifies the validity of the
ansumed detector resolutions efficlencies, calibrations, and the beam
norralization. Figure S5a shows the distribution of IE vs. L|P| for the

deatected u+ + é+e+e-ve5 events and a 907 acceptance contour for ut s etete”

u
svents. T¥{gure 5b shows the unnormalized distribution for u+ + e+e+e_veﬁu
events from the Monte Carlo simulation.
It is expected that we will takhe data representing 1012 gropped muons this

sunmer, and that iimits of 107!} will be placed on all three decay modes.
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